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Abstmet. A new and powerful mathematical technique is described for evaluating the 
binding energies of excitons within the framework of the variational method. The technique 
is applied to infinite wells and the binding energies of 1s- and 2s-type excitons calculated 
as a function of well width. 

1. Introduction 

It is well known that the characteristic emission from multiple quantum well structures 
occurs via exciton emission (Chang et al 1988). In a real solid there are many 
complicating effects which preclude a simple comparison of the experimental ObSeNa- 
tion of the exciton emission energy with the theoretical estimate of this value. This 
arises from uncertainty in the knowledge of a whole range of parameters included 
among which are the value of the band offsets, the magnitude of the intemal strain, 
the exaci widths of the weiis and barriers, the reievant eiiective mass parameters and 
the degenerate nature of the valence band states. It is therefore essential to have some 
method which enables a reliable estimate to be made of the binding energy of the 
exciton once the values of the above parameters are known. In this regard we note 
that it is standard in the literature (Miller ef al 1982, Greene and Bajaj 1983, W u  and 
Nurmikko 1987, Chang ef a1 1988) to employ trial wavefunctions for the relative motion 

the 'best' estimate of the binding energy of the exciton. The purpose of the present 
paper is to describe a new and powerful mathematical method which enables accurate 
evaluation of the binding energy of the exciton given a particular choice of variational 
wavefunction. The approach should permit easier and more accurate evaluation of 
exciton binding energies than hitherto. 

hole are confined in the same region of space in an infinitely deep potential well. This 
serves the dual purpose of keeping the formalism relatively simple, thus enabling the 
essential mathematical steps involved to be clearly displayed, while providing a check 
on the validity of the theory in the limit of a quantum well of zero width, as described 
in greater detail below. 

aiectioii and hole and inv-oke the v-aiia~ofia: pfinciple gj 2 ir;;efion for 
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2. Method 

The quantum well structure appropriate to the present problem corresponds to a single 
rectangular quantum well of width L in the r-direction, but of infinite extent in the 
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xy plane. The energy levels of an exciton in such a structure can be described in terms 
of the effective mass approximation (Chang et al 1988, Wu and Nurmikko 1988, WU 
1988). The appropriate Hamiltonian He, consists of two single particle Hamiltonians 
he(ze) and hh(zh) describing the separate motions of the electron and hole respectively, 
together with an interaction term h,<, representing their relative motion and arising 
from the Coulombic interaction term. Thus 

C P Hilton et al 

He,= he(ze)+ h,(zh)+ h,! ( I )  
where, for example, 

and O ( T )  is the Heaviside unit step function. An analogous expression holds for hh(zh).  
Similarly 

where the relative motion in the xy plane is assigned a coordinate rl, a momentum 
pL an effective (reduced) mass p and the medium is taken to have a dielectric 
constant E. 

The solution to the exciton Hamiltonian Hew is obtained via a variational approach 
employing a trial wavefunction of the form (Chang et all988,  Greene and Bajaj 1983, 
Wu and Nurmikko 1987, Bastard et al 1974, Wu and Nurmikko 1988, Wu 1988) 

y(rL,  ze, zh) =*e(ze)vh(zh)(Pe-h(rL, 12,- zhl) (4) 
where Y. (Yh) are the electron (hole) one-particle eigenfunctions of the Hamiltonian 
h.(z,) [hh(zh) ]  having eigenvalues E.(Eh) and pe.h(rL, 2.- zh) is the wavefunction 
describing the relative motion of the electron and hole. 

Within such an approach we are led to the problem of evaluating an energy term, 
Eh, where 

and is a measure of the binding energy of the exciton. 
The present paper is not concemed with the validity or otherwise of the so-called 

envelope function approximation which results in the above formalism, but deals solely 
with effecting great simplifications in evaluating the expression for Eh appearing in 
( 5 ) .  In order to illustrate the essential features ofthe present approach, and to constrast 
it with the standard technique employed to solve for E,, we consider first evaluating 
the electron-hole correlation energy. It follows from ( 5 )  that the latter has the form 

where the normalization integral 
, 

N =  Y*(r,,z.,zh)*(rL,zC,zh)dzcdzhd2ri. (7)  J 
Carrying out the integration over the xy plane will lead to a term 
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Because of the presumed functional form of ~ p . - ~ ,  the ensuing value of I will be a 
function of a = Izc-zhl only, i.e. 

I = l ( a ) .  

Employing this notation we can then rewrite ( 6 )  in the form 

-e' I ~ y ~ ( ~ ~ ) ~ 2 ~ ~ h ( ~ h ) ~ 2 ~ ( ~ )  dz, dzh NE 

which, with a simple change of variable, can be rewritten in the form 

for an appropriately defined value of p ( a ) .  
The utility of such an approach is that it avoids expanding the denominator of (6) 

in terms of a complete set of functions (typically modified Bessel functions) a s  is 
normally done (Chan et al 1988, Wu and Nurmikko 1987, 1988, Wu 1988). In further 
illustration of the method, consider the specific problem at hand, namely an infinitely 
deep potential well of width L. For this situation the (normalized) wavefunctions are 
given by 

' I 2  572 
qr=y =q h-(i) - - sin-, L 

For the situation where a # 0 we readily obtain, by expeditious use of the two Dirac 
delta functions S(z.-zh-a) and S ( z , - z . - a )  that 

(It is interesting to note that p ( a )  d a  is a measure of the (uncorrelated) probability of 
finding an electron and hole, the magnitude of whose separation along the z-axis lies 
between a and a+da) .  

The next step is concerned with the evaluation of the integral I ( a ) .  To illustrate 
the method we consider two examples. In the first example we will employ, for the 
relative motion of the electron and hole, a trial wavefunction that has been used 
extensively in the literature (Chang et al 1988, Wu and Nurmikko 1987, 1988, Wu 
1988), and which contains no dependence on \ze-zhl, namely 

where r : = x 2 + y 2 .  
Note, with this choice of trial function, the kinetic energy term in h,, can be trivially 

evaluated and has the form h2/2pA'. Substituting (12) into (9) gives, apart from a 
factor of 4/h2, 
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where a = 2/A. It is expedient for later manipulations to consider the special case of 
this integral corresponding to a = 0, i.e. 

C P Hifton et al 

where A ,  =a@. If in equations (13) and (14) we make the scale change 

r, = ar, (15) 
followed by 

r, = sinh 0 (16) 

we readily obtain 

[cosh 0 -sinh 01 do. (17) I (  a) - I ( 0 )  = -a rinh e jom 
If we then introduce the change of variable 

x = cosh 0 -sinh 0 =e-' (18) 

we get 

I(a)=z-ajo'exp[--(--x)] A i  1 dx 
A i  2 x  

which can be readily evaluated numerically for all values of a. It is to be emphasized 
that this same procedure simplifies all the integrals that occur in the theory for all 
choices of wavefunction pe.h employed later for the electron-hole relative motion. 

In order to illustrate this last point, we choose as our second example a wavefunction 
pc-h which possesses a dependence on a = 12.- zhl, thus we take 

pc.h(rI, a)-e-'/* (20) 

where r 2 =  r:+a*. For this situation the integral I ( a )  can be trivially evaluated since 

but r2 = r:+ a' giving r d r  = rL dr, and 

I ( a ) - l ~ e ' 2 ' / " d r = . e - ' O / * ,  2 (21) 

However, the evaluation of the kinetic energy terms associated with the z~-motion in 
the xy plane now becomes non-trivial. In particular we have 

The first two integrals may be simplified in the same manner as that leading to (21). 
However for the last two terms we must adopt the procedure described in equations 
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(15), (16) and (18). In this way we can write the RHS of (22) in the form 

which can again be readily evaluated numerically for all values of a. 
1.1 JUllllrLPly L1.S  pLc"="L ,cu"q"Lz CLlaDICs "b I" C V a l U d l C  rcnouy a,, Lllc IrLrGgr'%rJ 

that occur in the theory for any choice of trial function of the type given in (4) without 
the need for recourse to a series expansion as is usually done. It also has the distinct 
advantage that whatever the values of a, the range of integration lies in the domain 0 
to 1, and this has distinct computational advantages both for speed and, more impor- 
tantly, for accuracy. We will describe next the results of the analysis for various choices 
of -,vnr.efc8ctio:: 
of the binding energy of a 2s-exciton to be reliably estimated. 

r- ^..--I-. It." ---- --. .-A--: ---Ll-- ... I_ 5 ..-.- ..-a:,.. .,I .L. 2 _.^__ "1" 

ax!  for diRer'.cg we!! widths. %.is :hen cnab!cs :he ca!c-!a:ii3n 

3. Binding energy of 1s-state and 2s-state excitons 

We employed four different choices of trial wavefunction for the relative motion of 
the electron and hole for a Is-state exciton. These were as follows: 
,+,, - e-'.'* ,+,2-e-II/A 'p3-e-'/* 'pd-(1+Ba2)e-'/A 
where, as before, a = Ire - rhJ and r = (r: + 

Using the procedure described in the previous section, the values of the parameters 
A and B were then varied to give the largest numerical value for the binding energy 
Eb. Since in the authors' laboratory we are interested in ultimately applying the results 
of this analysis to the 11-VI compound CdTe, we employed effective masses and a 
dielectric constant appropriate to this compound, together with a corresponding free 
exciton binding energy of 10 meV. The results of the calculation are tabulated in table 
1, from which it can be seen that the function 'p,. which is extensively employed in 
the literature, is not the best choice of wavefunction in the variational sense, and can 
lead to significant underestimates of the electron-hole correlation energy for the wider 
wells. However, this apart, the wavefunctions 'p2,  pa and 'p4 which all contain a z 
dependence, give closely similar values for the exciton binding energy. This in itself 
is most encouraging in that it would indicate that the values of the exciton binding 
energy are in fact close to  these theoretical values, and can in this sense be reliably 
estimated via such an approach. With regard to the wavefunctions themselves we note 
that 'p2 is an unusual function in that although it is continuous at the origin, it possess 
a discontinuity in its derivative there. Similarly the function (p4, and functions like it 
having the form (1 +Ba2+Ca4+Da2+. ..)e-"*, offer no distinct advantage as far as 
evaluating the energy is concerned, despite their increased complexity. The results of 
the present calculations thus suggest that for real physical systems where the potential 
wells are of finite size, the function e-'/* offers reliable estimates of the energy and 
possesses a simple, compact form which commends its use. 

Eiaving reached ihis conciusion we turn nexi io the quesiion of reiiabiy estimating 
the energy of the excited 2s-state of the exciton. If we adopt the choice for the relative 
motion that 
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and insist that the total wavefunction *(rL, zc ,  zh) given in (4) and involving 'pr. be 
orthogonal to the corresponding wavefunction involving 'p, (as demanded by quantum 
mechanics) we can then express a2 in terms of the parameter A2 and the (already 
determined) parameter A of the 1s state. The energy of the 2s state can then be readily 
evaluated in the manner previously described and the parameter h2 varied to maximize 
the binding energy. The results obtained in this way for various well widths, are shown 
in table 1. There are two interesting points that are apparent from table 1. The first 

exciton becomes truly two-dimensional. For this situation the binding energy of the 
Is exciton should be four times the free exciton binding energy (thus giving a value 
of 40 meV in agreement with the calculations). However, and more importantly, the 
binding energy of the 2s exciton in this limit should be 4/9 that of the free exciton, 
i.e. 4.44 meV. The fact that the theoretical values approach this value is gratifying, and 
gives confidence in the orthogonality criterion adopted above and shows that this 
criterion prevents 'collapse to the core' (which could occur from unrestricted variation 
of a2 and A2) and in itself is reminscent of similar results obtained in pseudopotential 
theory, which is also based on this same orthogonality criterion. The second important 
result is that the 2s exciton binding energy does not vary significantly for large variations 
in the well width. An extrapolation of this result to finite potential wells could be used 
to provide accurate estimates there of the Is binding energy from observations of the 
energy separation of the 1s and 2s states. 

C P Hilton et al 
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Table 1. Theoretical values of binding energies from the trial functions 'p,-cp, as a function 
of well width, L, with the corresponding values of the Bohr orbits in A given in parenthesis. 
(m:=0.W6me, m:=0.4mc, s=9.6). 

Binding energies (mevj 

200 
160 
120 

80 
60 
40 
30 
20 
10 

1 

.M I"" 

11.62 (96) 
13.01 (88) 
14.94 (80) 

17.85 (70) 
20.00 (64) 
23.08 (57) 
25.23 (53) 
28.10 (49) 
32.31 (43) 
38.87 (37) 

:6.2? (75: 

18.69 (57) 
19.42 (57) 
20.60 (57) 

22.63 (55) 
24.25 (53) 
26.65 (50) 
28.37 (45) 
30.66 (45) 
34.03 (42) 
39.15 (37) 

2:.27 (56)  

17.85 (51) 
18.63 (52) 
19.90 (52) 

22.10 (52) 
23.83 (51) 
26.37 (48) 

30.55 (45) 
34.00 (41) 
39.15 (37) 

2!2.82 (52) 

28.17 (47) 

17.85 (51) 
18.63 (52) 
19.90 (52 )  

22.10 (52) 
23.83 (51)  
26.37 (48) 
28.17 (47) 
30.93 (43) 
35.54 (40) 
39.41 (37) 

28.54 (52 )  

3.63 (121) 
3.59 (125) 
3.59 (128) 

3.65 (129) 
3.73 (127) 
3.85 (124) 

4.06 (118) 
4.20 (115) 
4.41 (109) 

3.5! !!38! 

3.94 (122) 

4. Conclusion 

We have developed a new method for calculating the binding energies of excitons 
within the framework of a variational approach. The technique is simple and straightfor- 
ward to apply. Two of'the great assets of the present approach are the avoidance of 
a series expansion, and the evaluation of rapidly convergent integrals confined to a 
range of integration running from 0 to 1 only. We have demonstrated the utility of the 
formalism by calculating the binding energies of a 1s and 2s exciton confined to an 
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infinitely deep potential well of varying width. The results suggest that the binding 
energies of the 1s and 2s exciton states can be reliably estimated in this manner via 
the variational approach, and also demonstrate that a choice of wavefunction that is 
commonly employed in the literature can result in significant underestimates of the 
electron-hole correlation energy for the wider wells. The extension of this method to 
the calculation of binding energies of excitons in a single quantum well of finite depth, 

subsequent publication (Hilton et a/ 1992). 
or mc!dp!e quEn!um we!! systems is strEigh:fcF-:wa:d and wi!! be described in a 
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